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Introduction: Reynolds-averaged numerical models are routinely applied to simulate 
waves, currents and turbulence in the Great Lakes.  These models have recently been 
developed to predict transport processes that are relevant to fish recruitment, including 
egg hatching and larval transport (see work by Zhao, Beletsky, Ludsin, Smith, etc.).  The 
ability of these models for this task depends on the accuracy with which the models 
reproduce the governing hydrodynamics.  The objective of this paper is to describe the 
abilities, limitations and requirements of Reynolds-averaged models in reproducing 
physical processes of varying scale in the Great Lakes.  Specific processes discussed 
include basin-scale surface and internal waves, progressive nonlinear internal waves and 
turbulent mixing. 
 
Basin-scale waves and wave-driven currents: The large-scale circulation and 
currents in the Great Lakes are primarily forced by basin-scale surface and internal 
seiches.  These low frequency low speed oscillations have wavelengths that scale with the 
basin size and so are reasonably reproduced on the coarse grids (kms to 100s of m) of 
Reynolds-averaged lake models (e.g., Boegman et al 2001; Boegman and Rao 2010; 
Ahmed et al 2013). Unlike smaller lakes, the Earth’s rotation affects wave motions in the 
Great Lakes because the Burger number, S = Ro/L<< 1, where the Rossby Radius Ro = 
c/f is the ratio of the wave speed c to the inertial frequency f = 9.77 x10-5 s-1, at the 
latitude of the Great Lakes, and L ~ 100 km is a characteristic lake lengthscale (typically 
the lake width).  For surface and internal seiches, Ro ~ (50 m s-1) /f ~ 500 km and Ro ~ 
(0.5 m s-1) /f ~ 5 km, respectively, giving S > 1 for surface and S < 1 for internal seiches. 
This means that surface seiches act as planar oscillations along the lake length or width, 
without significant rotational effects, while slowly propagating internal seiches are 
affected by rotation.   

In the northern hemisphere, the longitudinal seiche becomes a counter-clockwise 
propagating Kelvin wave, constrained to a lengthscale of Ro ~ 5 km from where the 
thermocline intersects the lakebed (Fig. 1).  Similarly, the transverse seiche becomes a 
clockwise propagating Poincare wave that spans the lake interior.  Reynolds-averaged 
models reproduce Poincare wave motions (Fig. 2), which drive circular particle paths 
with period, T = 2�/f and diameters D ~ c/f ~ 5-10 km and significantly influence 
offshore particle dispersion (Cary Troy, unpublished data).  Surface seiches and Poincare 
waves are, thus, well simulated by lake models (Boegman and Rao 2010; Ahmed et al 
2013), but typical the horizontal grid spacing is ~ 500 m < Δx < ~ 5 km and so 
insufficient to resolve the Kelvin wave with width Ro ~ 5 km.  
 
Progressive nonlinear waves and internal surges: Large amplitude internal 
surges will occur on the thermocline after storm-event forcing (e.g., Boegman and Rao 
2010).  These surges will steepen until dispersion becomes important and then degenerate 
into progressive nonlinear internal waves, NLIWs (e.g., Boegman et al 2003; de la Fuente 
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et al 2010; Boegman and Dorostkar 2011; Vilhena et al 2013).  To capture physical 
dispersion the model horizontal grid spacing must be of the same order as the thermocline 
depth, which is ~ 10 m (Vitousek and Fringer 2011; Dorostkar 2012). While NLIWs have 
not been observed in the Great Lakes (nobody has really looked), they have been 
observed in numerous small (Cayuga Lake (Fig. 3), Seneca Lake, Loch Ness, Babine 
Lake, etc.) and large (Lake Constance, Lake Biwa, Lake Iseo, etc.) lakes, where they 
break on the lakebed at the depth of the thermocline causing local mixing and sediment 
resuspension (Boegman and Ivey 2009).   

In addition to the dispersive grid requirement, NLIWs typically have wavelengths 
of ~100s of m and amplitudes of ~10s of m (Boegman et al 2003; Boegman and 
Dorostkar 2011).  They are, therefore, below the feasible horizontal grid scale of 
Reynolds-averaged Great Lakes models.  Moreover, these waves require nonhydrostatic 
pressure solvers, which are iterative and take ~10 times longer to converge, compared to 
the typical hydrostatic solvers.  For these reasons, it is not practical to resolve NLIWs in 
Great Lakes models; for example to simulate 10 days of NLIW propagation in Cayuga 
Lake (Fig. 3) takes 6 months on 80 CPUs using the MITgcm (Boegman and Dorostkar 
2011).          
 

Turbulent Mixing: The smallest scales of motion in the Great Lakes are those 
associated with turbulent dissipation ε (W kg-1), which is the irreversible loss of fluid 
momentum to heat by viscous friction, and turbulent mixing K (m2/s), which is the 
diffusion of scalar variables by turbulent eddies.  Historically, there has been limited 
research on turbulence in the Great Lakes (Table 1).  The rate of ε varies locally with the 
strength of the currents and stratification and the bed roughness.  At typical lake 
Reynolds numbers, turbulent parameters are anisotropic, with canonical horizontal 
diffusivities of Ky ~ Kx ~ 1 m2 s-1 and vertical diffusivities of Kz ~ 10-3 to 10-6 m2 s-1 
(Table 2). 

The smallest motions associated with turbulent eddies occur on scales that are 
significant for dispersal of fish eggs, larvae and plankton, and likely influence 
recruitment success (e.g., China and Holzman 2014). These are the Kolmogorov length 
(Lη ~ 0.3 – 6 mm), time (Tη  ~ 1 – 30 s), and velocity (Uη ~ 0.2 – 2 mm s-1) scales (Table 
1).  Reynolds-averaged models have typical timesteps of minutes and vertical grid 
spacing of order 500 m – 5 km and 0.5 m - 1 m, respectively, and so sub-grid-scale 
energy dissipation and diffusion must be parameterized from the resolved mean flow; as 
must any effects on recruitment.  There are many parameterization options, many of 
which require significant calibration to ensure adequate prediction of observed 
temperature and current fields.  A full description of these parameterizations is beyond 
the scope of this paper.  Some model parameterizations reasonably reproduce turbulent 
fields (Fig. 4).   To directly resolve several days of turbulent motions with Kolmogorov 
scale grids and timesteps (i.e., a Direct Numerical Simulation) would require a lake 
volume of ~ 1 m3 (e.g., Scalo et al 2013).  Therefore, lake-wide simulations at these 
scales are not practical; however, in a very small lake, the largest overturns leading to 
turbulence have been briefly simulated (Botelho and Imberger 2007).  
 
Conclusions: Using ~500 m horizontal by ~1 m vertical resolution, hydrodynamic 
models should capture surface and internal (Kelvin and Poincare) seiche motions in the 



Great Lakes with runtimes of hours to days.  Smaller scale nonhydrostatic features 
(internal nonlinear waves and hydraulic jumps) would require months of parallel 
computation on horizontal grids of order 10 m and, therefore, are not feasibly simulated.  
Grid-averaged turbulent quantities (e.g., dissipation and diffusion) can be correctly 
parameterized from the resolved mean flow. However, more observations and model-
specific validations are required.   
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Table 1: Typical Kolmogorov length Lη, time Tη, and velocity Uη scales from 
observations in Lake Ontario and Lake Erie.  The kinematic viscosity ν ≈10-6 m2 s-1.   
Location ε (W kg-1) Lη = (ν3/ε)1/4 

(mm) 
Tη = (ν/ε)1/2 (s) Uη = (νε)1/4  

(mm s-1) 
Source 

Central Lake Erie 
nearshore 

10-7 1.8 3.2 0.56 Bouffard et al  2013 

Central Lake Erie 
offshore 

10-9 5.6 31 0.18 Bouffard et al  2013 

Western Lake Ontario 
surface layer 

10-4 to 10-5 0.32 to 0.56 0.10 to 0.31 1.8 to 3.2 Terray et al 1996 

Lake Ontario nearshore 
hypolimnion 

10-8 3.2 10 0.32 Paturi et al 2013 

Lake Ontario nearshore 
surface layer 

10-5 0.55 0.30 1.8 Palmer 1973 

Lake Ontario offshore 
surface layer 

10-4 0.32 0.11 3.1 Palmer 1973 

 
 
 
 
Table 2: Typical vertical (diapycnal) diffusivities from observations in Lake Ontario and 
Lake Erie.   
Location Kz (m2 s-1) Source 
Western Lake Erie nearshore 6×10-4 to 5.5×10-3 Edwards et al. 2005 
Western Lake Erie offshore reef 1.7×10-3 to 4.1×10-3 Ackerman et al. 2001 
Central Lake Erie watercolumn 6.5×10-6  Bouffard and Boegman 2013 
Western Lake Ontario nearshore 10-3 Rao and Murthy 2001 
Central Lake Erie watercolum 10-4 to 10-5 Rao et al. 2008 
 
 
 
 
 

 
Figure 1: Depth-averaged current speed from ELCOM showing two phases of the Kelvin 
wave propagation around Lake Ontario after an idealized wind forcing event.  
Unpublished figure from simulations described in Boegman and Rao (2010).    



 
 

Figure 2: Observed and ELCOM modeled Poincare wave-induced velocity field Sta. 341 
in central Lake Erie during 2009.  (a) Observed and (b) modeled east-west velocity 
component; (c) observed and (d) modeled north-south velocity component.  (e)-(h)Time 
series of observed and modeled velocity at 4.3 m and 12.3 m depths in east-west and 
north-south directions, as indicated.  From Valipour, Bouffard, Boegman and Rao, 
submitted to Limnol. Oceanogr. 
 

 
 
Figure 3: (a) Observed and (b) MITgcm modeled NLIW packet (day 273) and internal 
surge (day 274) in Cayuga Lake during 2006.  From Boegman and Dorostkar (2011). 



 
Figure 4: Observed and modeled (using the ELCOM model) turbulent dissipation 1 m 
above the bed on the 20 m isobaths offshore from Port Hope, Ontario.  From Paturi, 
Boegman, Bouffard and Rao, submitted to J. Hydraulic Eng. 
 


